Does network topology influence systemic risk contribution? A perspective from the industry indices in Chinese stock market
نویسندگان
چکیده
This study considers the effect of an industry's network topology on its systemic risk contribution to the stock market using data from the CSI 300 two-tier industry indices from the Chinese stock market. We first measure industry's conditional-value-at-risk (CoVaR) and the systemic risk contribution (ΔCoVaR) using the fitted time-varying t-copula function. The network of the stock industry is established based on dynamic conditional correlations with the minimum spanning tree. Then, we investigate the connection characteristics and topology of the network. Finally, we utilize seemingly unrelated regression estimation (SUR) of panel data to analyze the relationship between network topology of the stock industry and the industry's systemic risk contribution. The results show that the systemic risk contribution of small-scale industries such as real estate, food and beverage, software services, and durable goods and clothing, is higher than that of large-scale industries, such as banking, insurance and energy. Industries with large betweenness centrality, closeness centrality, and clustering coefficient and small node occupancy layer are associated with greater systemic risk contribution. In addition, further analysis using a threshold model confirms that the results are robust.
منابع مشابه
A financial network perspective of financial institutions’ systemic risk contributions
This study considers the effects of the financial institutions’ local topology structure in the financial network on their systemic risk contribution using data from the Chinese stock market. We first measure the systemic risk contribution with the Conditional Value-at-Risk (CoVaR) which is estimated by applying dynamic conditional correlation multivariate GARCH model (DCC-MVGARCH). Financial n...
متن کاملStudy of Systemic risk in the banking sector of Tehran Stock Exchange: Graph theory approach and ARMA-gjrGARCH-DCC
Banking systems are critical to economies, and their influence is significantly stronger in Iran. As a result, fragility in the country's financial system and the emergence of systemic risks in the banking system undermine the economy's stability and performance. Due to the importance of systemic risk in the banking network, this study examines the factors affecting the occurrence of systemic r...
متن کاملA Stock Market Filtering Model Based on Minimum Spanning Tree in Financial Networks
There have been several efforts in the literature to extract as much information as possible from the financial networks. Most of the research has been concerned about the hierarchical structures, clustering, topology and also the behavior of the market network; but not a notable work on the network filtration exists. This paper proposes a stock market filtering model using the correlation - ba...
متن کاملCan Network Linkage Effects Determine Return? Evidence from Chinese Stock Market
This study used the dynamic conditional correlations (DCC) method to identify the linkage effects of Chinese stock market, and further detected the influence of network linkage effects on magnitude of security returns across different industries. Applying two physics-derived techniques, the minimum spanning tree and the hierarchical tree, we analyzed the stock interdependence within the network...
متن کاملDoes Exchange Rate Non-Linear Movements Matter for Analyzing Investment Risk? Evidence from Investing in Iran’s Petrochemical Industry
The present study models the risk of investment in the petrochemical industry considering the impacts of exchange rate (US dollar to Iran's Rial) movements using the time series data from November 2008 to March 2019 and ARFIMA-FIGARCH framework. The empirical results prove the existence of the Fractal Market Hypothesis, FMH, and the Long Memory property in both the risk and return of the petroc...
متن کامل